Shannon entropy: axiomatic characterization and application

نویسندگان

  • C. G. Chakrabarti
  • Indranil Chakrabarty
چکیده

We have presented a new axiomatic derivation of Shannon entropy for a discrete probability distribution on the basis of the postulates of additivity and concavity of the entropy function. We have then modified Shannon entropy to take account of observational uncertainty.The modified entropy reduces, in the limiting case, to the form of Shannon differential entropy. As an application, we have derived the expression for classical entropy of statistical mechanics from the quantized form of the entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axiomatic Characterizations of Information Measures

Axiomatic characterizations of Shannon entropy, Kullback I-divergence, and some generalized information measures are surveyed. Three directions are treated: (A) Characterization of functions of probability distributions suitable as information measures. (B) Characterization of set functions on the subsets of {1, . . . , N} representable by joint entropies of components of an N -dimensional rand...

متن کامل

An axiomatic characterization of a two-parameter extended relative entropy

Shannon entropy [1] is one of fundamental quantities in classical information theory and uniquely determinded by the Shannon-Khinchin axiom or the Faddeev axiom. Oneparameter extensions for Shannon entropy have been studied by many researchers [2]. The Rényi entropy [3] and the Tsallis entropy [4] are famous. In the paper [5], the uniqueness theorem for the Tsallis entropy was proven. See also ...

متن کامل

Notes on evolution of axiomatic characterization of the Tsallis entropy

The Tsallis entropy was proposed as a possible generalization of the standard Boltzmann-Gibbs-Shannon (BGS) entropy as a concept aimed at efficient characterisation of non-extensive complex systems. Ever since its introduction [1], it has been successfully applied in various fields [2]. In parallel, there have been numerous attempts to provide its formal derivation from an axiomatic foundation,...

متن کامل

A uniqueness theorem for entanglement measures

We obtain a mathematically simple characterization of all functionals coinciding with the von Neumann reduced entropy on pure states based on the Khinchin-Faddeev axiomatization of Shannon entropy and give a physical interpretation of the axioms in terms of entanglement.

متن کامل

Boltzmann-gibbs Entropy: Axiomatic Characterization and Application

Wepresent axiomatic characterizations of both Boltzmann andGibbs entropies together with an application.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005